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above threshold. Quantitative comparison of such data with theory is always per- 
formed through computation of the factorial moments since these functions are 
independent of beam attenuation (Pike 1969). 

The dependence of the second moment of the intensity fluctuation ( I 2 )  upon 
integration time can be very accurately predicted by use of the following approximate 
formula : 

This is simply constructed by assuming the intensity fluctuation spectrum to be a 
single Lorentzian line and using the formula (Jakeman and Pike 1969) 

d2 ( I 2 )  
*(T'-) = 2(1+ce-5) 

together with the known form of (12)/(1)2 at T = 0 which defines C. 
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Statistical accuracy in the digital autocorrelation 
of photon counting fluctuations 

Abstract. Optical measurements by intensity fluctuation spectroscopy are 
subject to errors arising from the statistical nature of light and of the photo- 
detection process. We report here the results of a calculation of the expected 
errors, due to these causes, in linewidth measurements by digital autocorrela- 
tion of photon counting fluctuations. 

As the methods of intensity fluctuation spectroscopy are applied to a greater 
variety of problems (see for example Benedek 1968, Pike 1969, Cummins and Swinney 
1970) it becomes increasingly important to assess their accuracy as a function of the 
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experimental variables. Not only would this make it possible to predict the accuracy 
of a measurement obtained with a given experimental arrangement, but the use of 
expensive equipment could also be optimized for a given purpose. The problem has 
been investigated in the special case corresponding experimentally to using a detector 
area much larger than a coherence area of the light by several authors (Benedek 1968, 
Haus 1969, Cummins and Swinney 1970). More recently, Pusey (private communica- 
tion) has evaluated the error in the intensity autocorrelation function in the limit of 
zero time delay when the light is sampled over periods which are short compared with 
its coherence time. Also making the latter assumption, Degiorgio and Lastovka 
(private communication) have calculated the variance of the intensity autocorrelation 
function of Gaussian-Lorentzian light for arbitrary delay times. In  addition they have 
computed the error in the linewidth, obtained by a three-parameter least-squares 
fitting procedure, for this case. 

Signal 

Sample I 

Sample 2 

Sample h 

Time- 

Figure 1. Sampling scheme used by Foord et aZ. (1970). 

We have independently calculated the expected error in the intensity autocorrela- 
tion function and in the linewidth (obtained by a two-parameter least-squares fitting 
appropriate to our own experimental procedure) of Gaussian-Lorentzian light, for 
the more general case of arbitrary sample time. We present here some of the more 
important results of this calculation, taken from a complete treatment of the problem 
to appear in due course. 

We consider the experimental situation described by Foord et al. (1970) which 
uses the sampling scheme shown in figure 1. Samples of the autocorrelation function 
are constructed at intervals Tp,  each sample consisting of M channels containing the 



Letters to the Editor L57 

product n(t; T )  n(t+rT; T )  where the integer Y runs from 1 to M,  and n(t; T )  is the 
number of photons counted in the interval T centred at time t. The sample time T 
is the resolition time of the instrument if, as we shall assume, dead-time-effects are 
negligible. In  the experiments referred to above all M delayed products were con- 
structed within the time T and sampling was carried out with a period T, = T to 
minimize information wastage. Drift of the mean photoelectron count rate during the 
course of a series of experiments necessitates normalization of each complete measure- 
ment and the quantity determined experimentally, namely 

N 

N - l  C n ( r T + ~ ;  T)n(rT; T )  

where T is the delay time, and N is the number of samples taken, is a biased estimate 
of the normalized intensity autocorrelation function. We have evaluated analytically 
the variance of the unbiased estimator 

N 

T )  = N - l  C ~ ( Y T + T ;  T)n(rT; T )  
7 = l  

of the un-normalized intensity correlation function for the case of Gaussian-Lorent- 
zian light, using the methods of Jakeman and Pike (1968) and the finite-sample-time 
results of Jakeman (1970). The  variance of the biased estimator (1) is more difficult 
to calculate and we have retained terms of order N - l  only. This will normally be a 
very good approximation and leads to a relatively simple analytic form for the error 
ingC2)(T; T) .  Experimentally, an estimate for the optical linewidth is obtained by a 
least-squares fit of the measured values of (1) to the function 

C depends on the sample time, linewidth, detector area and dead-time effects and, 
although it can sometimes be calculated, is normally treated as an independent 
parameter. We have investigated the weighting to be used in the above procedure and 
have expressed the variance of I? for the optimum distribution in terms of the variance 

The  results obtained for the percentage error in I' in the case of Gaussian- 
Lorentzian light are plotted as a function of FT for various values of Y (the mean 
number of counts per coherence time) and M in figure 2. The curves relate to an 
experiment in which NFT is lo4. At such typical large values the ordinate scales as 
l/(NI'T)1'2. For a fixed number of channels there is an optimum choice of sample time 
defined roughly by MFT N 1 to 3 according to the value of r. There is nothing to be 
gained by increasing M beyond the value for which the optimum choice of T is such 
that rI?T N the error cannot be reduced 
by increasing the number of counts per coherence time beyond about ten. If Y > 10 
it is advantageous to reduce the detector area until r is of this order since this will 
reduce spatial averaging effects (Jakeman et al. 1970). When the statistics of the 
detection process dominate the error (rrT < 1) it is possible to improve the situation 
by increasing the detector area up to about a coherence area provided that r remains 
less than 10. Little further can be gained in any circumstance by increasing the de- 
tector area beyond this size. 

OffC2'(T; T>. 

Moreover, provided that I?T > 
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In  a number of recent experiments the autocorrelation function has been found by 
using a 'clipping' technique (Jakeman and Pike 1969). We have not yet completed 
calculations for this case for finite sampling times and we have presented here final 
results solely for the unclipped case. When clipping is used these results will have 
only qualitative significance for high counting rates but will be adequate in the 
common experimental situation of clipping at zero with low mean. Considerable 
simplification of the calculation in fact occurs in the low mean limit, when the stat- 
istics of the photo-detection process dominate the error. This also occurs in experi- 
ments where T,  is so large that the samples of the autocorrelation function are 
independent. In this case the normalized variance of the single clipped autocorrela- 
tion function G k ( 2 ) ( ~ )  may be shown to take the form (T-tO) 

where x = n'/(l+ n'), n' is the mean number of counts per sample, K is the clipping 
level and g(''(7) the optical or field autocorrelation function. The expression (4) is 
applicable to the experiments of Foord et al. (1970) in the limit n' < 1. The ratio of 



Letters to the Editor L59 

the normalized variances of the clipped and unclipped intensity correlation functions 
then reduces to 

and takes the value unity when K = 0. It is interesting to note that the expression (4) 
is not minimized by clipping at the mean. For example when 7 is large so that the 
first term dominates, the minimum value, as a function of K, occurs when fi  is approx- 
imately equal to the expression l/[exp{2/(1 +k))- 11. 
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